relative nullity - определение. Что такое relative nullity
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое relative nullity - определение

THEOREM
Rank theorem; Rank nullity theorem; Rank-nullity theorem; Rank-nullity; Rank nullity
  • Rank–nullity theorem

Relative velocity         
  • Relative motion man on train
  • Relative velocities between two particles in classical mechanics
VELOCITY OF AN OBJECT OR OBSERVER B IN THE REST FRAME OF ANOTHER OBJECT OR OBSERVER A
Relative motion; Relative speed
The relative velocity \vec{v}_{B\mid A} (also \vec{v}_{BA} or \vec{v}_{B \operatorname{rel} A}) is the velocity of an object or observer B in the rest frame of another object or observer A.
Relative risk         
  • Risk Ratio vs Odds Ratio
IN STATISTICS AND EPIDEMIOLOGY
Relative Risk; Relative risks; Relative chance; Relative probability; Risk ratio; Adjusted relative risk
The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association between the exposure and the outcome.
Nullity         
WIKIMEDIA DISAMBIGUATION PAGE
Nullity (disambiguation)
·noun That which is null.
II. Nullity ·noun The quality or state of being null; nothingness; want of efficacy or force.
III. Nullity ·noun Nonexistence; as, a decree of nullity of marriage is a decree that no legal marriage exists.

Википедия

Rank–nullity theorem

The rank–nullity theorem is a theorem in linear algebra, which asserts

  1. of a matrix M that its rank + its nullity = the number of columns, and
  2. of a linear transformation that the dimension of the domain is the sum of the transformation's rank (the dimension of its image) and its nullity (the dimension of its kernel).